THE KINETICS OF NON-ISOTHERMAL DECOMPOSITION OF PERIWINKLE SHELL

Akande, H. F.**, Oyawoye, M.R.*, Ibrahim, A.A.** and Nwafulugo, F. U.*

*Department of Chemical Engineering, Kaduna Polytechnic, Kaduna, Nigeria **Department of Mechanical Engineering, Kaduna Polytechnic, Kaduna, Nigeria + Corresponding author: <u>hassan.akande@kadunapolytechnic.edu.ng</u>

Abstract—The paper presents the kinetic studies of periwinkle shell thermal decomposition. Non-isothermal thermogravimetric experiments were carried out at heating rates of 10, 20 and 30 °C/min. For the estimation of activation energy (E), Kissinger-Akahira-Sinose (KAS), Ozawa-Flynn-Wall (OFW) and Coats-Redfern methods were used. The results showed that while KAS and OFW methods produced E values of 1349.97and -1267.08kJ/mol respectively with a corresponding correlation coefficient (R²) values of 0.9919 and 0.9917, Coats-Redfern method produced better R² value with E value ranges between 146.43 and 156.20 kJ/mol. Using the Coats-Redfern method, contracting area (R2) model produced the most suitable model to represent the reaction's mechanism. The values of activation energy decrease with increasing heating rate.

Index Terms—Calcium carbonate, Kinetic parameters, Non-isothermal thermogravimetry, Periwinkle shell, Quicklime, Recycling, Thermal decomposition

1 INTRODUCTION

RECYCLING is one of the environmental waste management schemes that is considered adequate for attaining a sustain-

able development; it produces new and useful commodities from wastes thereby reducing the exploitation of raw materials. One of such wastes is the shell of molluscs such as cockle, oyster, mussel, snail and periwinkle. According to Wanninger and Wollesen (2018), molluscs haveinhabited almost all the terrestrial and aquatic parts of the world; this suggests their population which has a direct effect on the shell (waste) generated to the environment. Many works (Chilakala et al., 2019; Filhoa et al., 2014; Nagasawa, 2013; Marin et al., 2012) have established that these shells are rich in calcium carbonate (CaCO₃) mineral in a proportion comparable to that of limestone. Periwinkle is abundantly found in the delta region of Nigeria (Niger Delta) (Ogunolaet al., 2017); Tympanotonus fuscatus and Pachymelania aurita are the main species inhabiting the littoral region (Bob-Manuel, 2012). Usually, humans throw the periwinkle shell into the environment after consuming their meat (Malu and Bassey, 2004). An essentialway of carrying out recycling of mollusc shells is through thermal decomposition: the shell is heated to a certain temperature whereby its CaCO₃ component decomposes to CaOand letting-off carbon (IV) oxide (CO₂) gas (Mohamed et al., 2012). Thermal decomposition of CaCO3 resources is also referred to as calcination (Mohamed et al., 2012).

Calcination of CaCO₃ resources such as limestone (Ar and Dogu, 2001) and mollusc shellshave been widely investigated due to its importance to industrial processes like cement production and quicklime (CaO) production; especially, kinetic analysis of the reaction has received much attention. The kinetic analysis is generally based on the experimental methods as well as the computational methods (Tian et al., 2017). The experimental method of studying calcination is mainly isothermal or non-isothermal thermogravimetric analysis. These experimental methods have been well reported in the literature, and variouscomputational methods have been used for evaluating the kinetic parameters (Brownet al., 2000; Vyazovkinet al., 2011); all these works aim at attaining the most probable presentation of the process. The commonly investigated types of the mollusc are cockle (Mohamad et al., 2016), oyster (Soisuwanet al., 2014) and mussel (Zhang et al., 2013) while periwinkle shell has received scanty attention.

Kinetic analysis of thermal decomposition of the periwinkle shell determines the reaction's kinetic parameters. They are the activation energy (*E*), Arrhenius constant (*A*) and the reaction model (f(a)). These parameters are known as the kinetic triplet (Kok, 2015). Many related works found in the literature simply focused on the potential use of the periwinkle shell in the construction industry and some other necessary uses (Ohimain *et al.*, 2009; Olusola and Umoh, 2012; Otunyo *et al.*, 2013; Oyedepo and Olukanni, 2015 and Soneye *et al.*, 2016). Studies on the kinetics of periwinkle shell calcination have not received much attention; therefore, the aim of thisworkwas to further thecurrentknowledge in this area.

Dr. Hassan F. Akande has PhD. in Chemical Engineering from Federal University of Technology, Minna, Nigeria, +234 8033686645. E-mail: hassan.akande@kadunapolytechnic.edu.ng

Dr. Francisca Nwafulugo has PhD. in Chemical Engineering from Ahmadu Bello University, Zaria, Nigeria, +234 8033686645. E-mail: hassan.akande@kadunapolytechnic.edu.ng

2 MATERIAL AND METHODS

2.1 Material

The periwinkle shell was crushed using a crusher and then washed with tap water. The sample was dried to constant mass (in the sun) for six days. After that, the sample was ground and sieved to a particle size of 0.1 mm.

2.2 Calcination Method

The calcination characteristic of the sample was obtained through the thermogravimetric analysis (TGA). A mass of 10 mg of the sample was placed on the sample holder of the Thermogravimetric (TG) machine (LINSEIS L7Q2171STGA). Calcination of the sample was done in an atmosphere of 20 ml N₂/min. The heating rate for the calcination process was at 10, 20 and 30 K/ min, respectively.

2.3 Kinetic Method

The general rate equation of solid-state reaction kinetics is expressed in Equation (1)

The general rate equation of solid-state reaction kinetics is expressed in Equation (1)

 $\frac{d\alpha}{dt} = k(T)f(\alpha)$ (1) where $d\alpha/dt$ is the rate of the decomposition reaction, $f(\alpha)$ is a function of conversion of the sample (a symbol for the reaction mechanism).

Arrhenius constant in Equation (1) is expressed as $k(T) = Ae^{-\frac{1}{RT}}$ (2)

where E is the activation energy (kJ/mol), A is the frequency factor (min⁻¹) and R is the universal gas constant (8.314 kJ/mol K). This re-expresses Equation (1) as

$$\frac{d\alpha}{dt} = Ae^{-\frac{B}{BT}}f(\alpha)$$
(3)

The relationship of time and temperature with regards to isothermal and non-isothermal measurements can be expressed as

 $\beta = \frac{aT}{dt}$ (4) where β is the heating rate (°C/ min) of sample imposed by the equipment, $\frac{dT}{dt}$ rate of change of temperature. The combination of Equations (3) and (4) produces the constant heating rate, nonisothermal differential equation

$$\frac{d\alpha}{dT} = \frac{A}{\rho} e^{-\frac{E}{RT}} f(\alpha)$$
(5)

The data from non-isothermal TGA is converted to fractional decomposition (α) expressed in Equation (6)

$$\alpha = \frac{M_i - M_T}{M_i - M_f} \tag{6}$$

where $M_{\rm i}$ - the initial mass of the sample; M_T - the mass of the sample at any temperature T and M_f - final mass at the end of the reaction.

2.4 NON-ISOTHERMAL COMPUTATION METHODS

The computation methods that are suitable for evaluating the kinetic parameters from non-isothermal datawere used; Coats-Redfern, Kissinger-Akahira-Sinose (KAS) and Ozawa-Flynn-Wall (OFW) are prominent examples (Lei *et al.*, 2019; Khawam, 2007). The appropriateness of each of these models to the calcination data of the sample was examined.

The Coats-Redfern method involves fitting of various reaction

models to the calcination data-a method called model-fitting. Coats-Redfern is obtained from the integral of Equation (5) as $ln\left[\frac{g(\alpha)}{T^2}\right] = ln\left[\frac{AR}{\beta T}\left(1 - \frac{2RT}{E}\right)\right] - \frac{E}{RT}$ (6)

Thus, E was evaluated from the slope while A can be evaluated from the intercept from the plot of $ln \left[\frac{g(\alpha)}{T^2}\right]$ against $\frac{E}{R}$ of Equation (6) (Ashraf *et al.*, 2019). Some solid-state reaction models in both differential (f(α)) and (g(α)) forms are presented in Table 1. Kissinger-Akabira-Sinose (KAS) and Ozawa-Elynn-Wall

Kissinger-Akahira-Sinose (KAS) and Ozawa-Flynn-Wall (OFW) methods do not rely on the prior knowledge of thereaction model in order to estimate the kinetic parameters; theseare called model-free methods. Equations (6 and 7) express KAS and OFW respectively (Lei *et al.*, 2019).

$$\frac{\ln \left|\frac{p}{T^2}\right| = \ln \left|\frac{\kappa A}{Eg(\alpha)}\right| - \frac{E}{RT} \\ \ln(\beta) = -1.052 \frac{p}{RT} + \ln \left[\frac{AE}{Rg(\alpha)}\right]$$

Table 1: Some solid-state reaction models

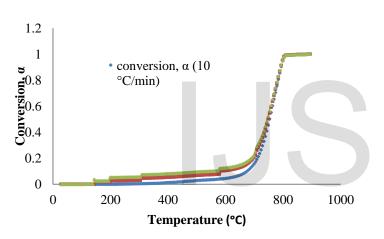
Model/
Differential form

Model/	Ι	Differential form	Integral
Mechanism		$f(\alpha) = 1/(k d\alpha/dt)$	form
			$\mathbf{g}(\mathbf{\alpha}) = \mathbf{kt}$
Reaction	order m	odels	
Zero-or-		$(1 - \alpha)^{0}$	α
der (F0/R1)			
First-or-		$1 - \alpha$	$-\ln(1-\alpha)$
der (F1)			
Second-		$(1 - \alpha)^2$	$[1/(1 - \alpha)]$
order (F2)			- 1
Third-		$(1 - \alpha)^{3}$	(1/2)[(1
order (F3)			$(-\alpha)^{-2} - 1]$
Geometri	ical cont	raction models	
Contracti	ng	$2(1-\alpha)^{1/2}$	1
area (R2)			- (1
			$(-\alpha)^{1/2}$
Contracti		$3(1-\alpha)^{2/3}$	1
volume (R3)			- (1
			$(- \alpha)^{1/3}$
Diffusion	n models		2
1-D dif-		$1/(2\alpha)$	α^2
fusion (D1)			
2-D dif-		$-[1/ln(1-\alpha)]$	$[(1-\alpha)\ln(1)]$
fusion (D2)	[a.c.		$(-\alpha)$] + α
3-D dif-	[3(1 –	$(\alpha)^{2/3}]/[2(1-(1-\alpha)^{1/2})]/[2(1-(1-(1-\alpha)^{1/2})]/[2(1-(1-(1-(1-\alpha)^{1/2})]/[2(1-(1-(1-(1-(1-(1-(1-(1-(1-(1-(1-(1-(1-($	
fusion -			$-(1)^{1/2}$
Jander (D3)	o /[o	$((4))_{-1/2} (1)$	$(2 \alpha)^{1/3}$
Ginstlin	3/[2	$((1-\alpha)^{-1/3}-1)]$	$1 - (2/3)\alpha$
g-Broun-			$-(1-\alpha)^{2/3}$
shtein (D4)			
Nucleatio			$\alpha^{1/2}$
Mampel	power	$2\alpha^{1/2}$	$\alpha^{1/2}$
law (P2)		$3\alpha^{2/3}$	$\alpha^{1/3}$
Mampel	power	$3\alpha^{2/3}$	$\alpha^{1/3}$
law (P3)		$4\alpha^{3/4}$	$\alpha^{1/4}$
Mampel	power	$4\alpha^{-7}$	α-, -
law (P4)	:al lar	<i></i>	ln a
Exponent	lai law	α^{α} $2(1-\alpha)[-ln(1-\alpha)]^{1/2}$	$\ln \alpha$
Avrami-	2)	$2(1 - \alpha)[-m(1 - \alpha)]^{-1}$	$(2 \ [-ln(1 \ -\alpha)]^{1/2})$
Erofeyev (A Avrami-	<i>∠)</i>	$3(1-\alpha)[-ln(1-\alpha)]^{2/2}$	
Erofeyev (A	3)	$3(1 - \alpha)[-in(1 - \alpha)]$	$[-ln(1 - \alpha)]^{2/3}$
LIUICYEV (A	5)		uj

IJSER © 2020 http://www.ijser.org (6)

(7)

Intogral


Avrami-	$4(1-\alpha)[-ln(1-\alpha)]^{3/4}$	[-ln(1
Erofeyev (A4)		$(-\alpha)]^{3/4}$
Prout-Tompkins	$\alpha(1-\alpha)$	$ln[\alpha/(1-\alpha)]$
(B1)		$+ c^a$

(Khawam and Flanagan, 2006; Rejitha, 2010)

3 RESULTS AND DISCUSSION

3.1 THERMAL DECOMPOSITION (CALCINATION) OF PERIWINKLE SHELL

The thermal decomposition process of the periwinkle shell sampleis presented in Figure 1. It is seen that the initial stage of mass-loss occurred in the range of 200 - 650 °C.This could be due to the vapourisation of moisturefrom the periwinkle shell sample.Also, it is seen that the heating rates of 10, 20 and 30 °C/minresulted inincreased conversion in the same order.Another stage ofrapidmass-loss occurred in the range of 670 - 790 °C, substantially due to thermal decomposition of the sample. These observations are similar to the reports of Pliya and Cree (2015) and Mohamad *et al.* (2016).

This could be due to the vapourisation of moisture from the periwinkle shell sample. Also, it is seen that the heating rates of 10, 20 and 30 °C/min resulted in increased conversion in the same order. Another stage of rapid mass-loss occurred in the range of 670 - 790 °C, substantially due to thermal decomposition of the sample. These observations are similar to the reports of Pliya and Cree (2015) and Mohamad *et al.* (2016).

3.2 KINETIC ANALYSIS OF THE CALCINATION

The results of the activation energy (E) obtained through the use of Ozawa-Flynn-Wall (OFW) and Kissinger-Akahira-Sunose (KAS) models are presented in Table 2. Using these models, E was estimated at a fractional conversion value of 0.5. OFW model produced a curve witha poorer fit than that of KAS; the Equation of its curve does not obey the OFW model (Equation (7)).

Table 2: Ozawa-Flynn-Wall (OFW) and Kissinger-Akahira-Sunose (KAS) models

Banobe (1										
Model	E (kJ/ mol K)	Equation of the curve	\mathbb{R}^2							
OFW	-1267.08	y = 160328x - 154.06	0.9917							
KAS	1349.97	y = -162373x + 169.91	0.9919							

The resultsobtained through the Coats-Redfern model are presented in Tables 3 through 6 (for the heating rates of 10, 20 and 30 °C/min respectively). As seen in Tables 4 and 5, contracting area (R2) and 3-D diffusion -Jander (D3) respectively havethe highest correlation coefficients (R²) of 0.9999: thisR² value occurs at the heating rate values of 20 and 30 °C/min for the R2 model while it occursonly at 10 °C/min for the D3 model. R2 model also shows good fitting at 10 °C/min with R² value of 0.9993. Thus, it is chosen as the most probable model for describing the calcination of periwinkle shell in this study. This result is similar to the findings of Lei *et al.* (2019). The values of activation energy is also seen to decrease with increasing heating rate which means that at higher heating rates, periwinkle shell calcination is favoured.

Table 3:	Reaction	order
----------	----------	-------

Mod	Reaction o β(°C/mi	E(kJ/	A	Equation of	R ²
el	n)	mol		the curve	
01	11)	K)			
F0/R	10	146.1	12.703793	Y=-	0.995
1	10	0	71	17573x+2.5	1
1		Ū	/ 1	419	1
	20	119.1	0.595473	y = -14336x	0.997
		9		- 0.5184	3
	30	109.8	0.2065733	y = -13214x	0.997
		6	74	- 1.5771	9
F1	10	229.0	298343.3	y = -27544x	0.999
		0		+ 12.606	8
	20	200.6	12289.495	y = -24132x	0.998
		3	8	+ 9.4165	7
	30	190.7	4039.5966	y = -22938x	0.998
		1	64	+8.3039	1
F2	10	339.1	1.79421E+	y = -40788x	0.994
		1	11	+25.913	
	20	312.2	924177748	y = -37551x	0.990
		0	9	+22.947	6
	30	302.8	333587233	y = -36429x	0.989
		7	5	+21.928	2
F3	10	474.1	2.12011E+	y = -57035x	0.985
		9	18	+42.198	5
	20	450.9	1.79509E+	y = -54241x	0.981
		6	17	+39.729	4
	30	443.1	7.94576E+	y = -53301x	0.979
		4	16	+ 38.914	9

able 4:	Geometrical	contractio	on							x +	
Model	β(°C/min)	E (kJ/ mol K)		Equa- tion of the curve	R ²		20	300.5 4	241.2901325	25.968 y = - 36149 x +	0.999 5
R2	10	184.19		y = - 22154x + 6.4797			30	281.1 5	38570568.1	33817 x +	0.999 7
	20	156.20		y = - 18788x + 3.3124	0.9999	D3	10	413.8 4	4.60616E+1 3	17.468 y=- 49776 x +	0.999 9
	30	146.43	9.107518	y = - 17612x + 2.2091	<mark>0.9999</mark>		20	357.4 4	7902262617 5	31.461 y = - 42993 x +	0.999 8
R3	10	198.36	2426.974	y = - 23859x + 7.7944	0.9998		30	337.7 3	8565428885	25.093 y = - 40622 x +	0.999 6
	20	170.17		y = - 20468x + 4.6099		D4	10	380.0 3	7.50496E+1 1	x + 22.871 y = - 45710 x +	0.999 4
	30	160.31	33.09229	y = - 19282x + 3.4993	0.9996		20	319.3 2	758611290	27.344 y = - 38407 x +	0.999 8
	Diffusion						30	299.8 1	83553696.3	20.447 y = - 36060 x +	0.999 9
Mode l	β(°C/min)	E (kJ/ mol K)	A	Equa- tion of the	\mathbb{R}^2	Table 6:	Nucleation			18.241	
D1	10	309.3 1	1262046124	curve $y = -$ 37204 $x +$ 20.056	0.995 7		β(°C/min)	E (kJ/ mol K)	А	Equa- tion of the curve	R ²
	20	255.4 9	2774552.717	30730 x +	0.997 7	P2	10	146.1 0	6.35156136 3	y = - 17573x + 1.8487	0.995 1
	30	236.8 3	334034.675	$ \begin{array}{r} 14.836 \\ y = - \\ 28486 \\ x + \\ 12.710 \end{array} $	0.998 2		20	119.1 9	0.29775046 8	y = - 14336x - 1.2115	0.997 3
D2	10	356.1 6	1.89565E+1 1	12.719 y = - 42839	0.998 4		30	109.8 6	0.103292		0.997 9

International Journal of Scientific & Engineering Research Volume 11, Issue 11, November-2020 ISSN 2229-5518

IJSER © 2020 http://www.ijser.org

	0010										
•3	10	37.30	5.92059E-	2.2702 y = -	0.991		20	146.2 0	22.06958	y = - 17585x	0.998 6
			05	4485.9	3					+	
				x - 9.7345			30	138.7	22.4839168	3.0942	0.007
	20	28.32	2.13386E-	y = -			50	138.7 5	4	y = - 16689x	0.997 9
	20	20.52	05	3406.8	0.994			5	7	+	,
			05	x -	4					2.2598	
				10.755						2.2390	
	30	25.22	1.5007E-05	y = -	0.995						
				3032.9	3	4.	Conclusi	on			
				х -			The Coats-Re	edfern meth	od provides bet	ter fitting to	o the non-
				11.107		isotl			nkle shell than		
P 4	10	23.69	1.27628E-	у = -	0.987				nethod, contrac		
			05	2850x -	7	is th	e most suitabl	emodel to r	represent the re	action's model 46.42 and 1	echanism
				11.269		mol	The values of	rgy values r	ange between 1 nergy decrease	with increa	sing heat
	20	16.97	5.93897E-	у = -	0.991	ing		detrivation e	nergy deeredse	with morea	sing neur
			06	2040.6		0					
				х -		5. A	CKNOWLEDO	GMENT			
	•			12.034	0.001		The authority	ors are grate	eful to the Tert	iary Educa	tion Trus
	30	14.63 4.5564E-	4.5564E-06	y = -0.991					geria for provi	ding the In	stitutiona
			_	1760.2	9	Base	ed Research (I	BR) grant fo	or this work.		
				x - 12.299							
42	10	105.9	0.19522574	y = -	0.999	RF	ERENCES				
12	10	5	3	12743x	8			bilistic Intorpro	tation of Feedforwa	rd Classificati	on Notwor
		5	5	-	Ū	[T]		_	Statistical Pattern F		
				1.6336			-	-	and Applications, F.	-	
	20	91.76	0.039633	y = -	0.998				F68, Berlin: Springer	r-Verlag, pp. 2	27-236, 1989
				11037x	5	[2]	(Book style with p		editor) and Systems. Belm	opt Calify M	Jadamarth
				-		[4]	pp. 123-135, 199			ont, cam. v	vausworth
				3.2281		[3]			, ry of Multiuser D) imensions,"	MUD His
	30	86.80	0.02272250	у = -	0.997				du/home/pb/m	ud-history.h	tml. 1986
			6	10440x	7	[4]	(URL link *inclu	. ,			1 /11 1
				-		[4]	K. Elissa, "An oblished manusci		Decision Theory	"unpublishe	d. (Unplu
				3.7844		[5]		1 ,	on Decision Theo	rv," J. Comp	uter Vision
43	10	146.9	22.48393	y = -	0.999				ending publicatio		
		7		17677x	8	[6]			in Research Labo		lder, Colo.
				+		[7]	*		92. (Personal com	,	0.1
	20	128.0	241.290218	3.1128	0.998	[7]			dt, "Velocity-Alig sion Detection," I		
	20	128.0 5	241.290218	y = -15402x	0.998 6			-	. 14, no. 1, pp.		
		5	Z	13402x +	0			-	5. (IEEE Transactio		
				0.9868		[8]			patibility of Adap		
	30	121.4	1.27774949	y = -	0.997				rcuits and Systems	Theory, pp.	8-16, 1994
		3	3	, 14606x	9	[9]	(Conference pro H. Goto, Y. Hase		I. Tanaka, "Efficie	nt Schedulin	g Focusino
		-	-	+	-	[~]		-	esentation," Proc		
				0.2451			tional Intelligen	ce in Schedu	ling(SCIS '07),	pp. 57 - 64, .	
					0.000		doi:10.1109/SCI	IS.2007.36767). (Conference pr	oceedings)	
4	10	167.4	241.2902	y = -	0.999	· · ·					
4	10	167.4 8	241.2902	y = -20144x	0.999 8	[10]			nalyzer," PhD dis		ept. of Elec

trical Eng., Harvard Univ., Cambridge, Mass., 1993. (Thesis or dissertation)

- [11] E.E. Reber, R.L. Michell, and C.J. Carter, "Oxygen Absorption in the Earth's Atmosphere," Technical Report TR-0200 (420-46)-3, Aerospace Corp., Los Angeles, Calif., Nov. 1988. (Technical report with report number)
- [12] L. Hubert and P. Arabie, "Comparing Partitions," J. Classification, vol. 2, no. 4, pp. 193-218, Apr. 1985. (Journal or magazine citation)
- [13] R.J. Vidmar, "On the Use of Atmospheric Plasmas as Electromagnetic Reflectors," *IEEE Trans. Plasma Science*, vol. 21, no. 3, pp. 876-880, available at http://www.halcyon.com/pub/journals/21ps03-vidmar, Aug. 1992. (URL for Transaction, journal, or magzine)
- [14] J.M.P. Martinez, R.B. Llavori, M.J.A. Cabo, and T.B. Pedersen, "Integrating Data Warehouses with Web Data: A Survey," *IEEE Trans. Knowledge and Data Eng.*, preprint, 21 Dec. 2007, doi:10.1109/TKDE.2007.190746.(PrePrint)

IJSER